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Why do we need 3D observations of
(warm) clouds?

 Clouds are fundamental to Earth’s radiation
budget

* Need 3D observations to unravel processes
e.g., cloud structure affects radiative transfer

* Help provide observational constraints for
realistic cloud and radiation parameterizations
in global circulation models.




How can we observe clouds in 3D?

* Problem: Scanning cloud radar
provides cloud structure but not
droplet size

e Solution: combine scanning cloud

radar (Ka/W-band) with spectral s nning c,oudradar
(shortwave) zenith radiances

— Exploit relationship between
radiance and optical depth, but also
account for 3D effects

Spectroradiometer




Method — Grid observations

Radiance track

 Allow clouds to advect across observation site
* Cross-Wind RHI scan optimum for shallow cumulus*

* Fielding et al., 2013, JGR



Method — Step 1 ( ‘Supercolumn’ retrieval)

3D effective radius

concentration

e Supercolumn size limited to
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Define state, observations and forward
models

X = 3D field of cloud effective radius, 2D field of
number concentration (assume constant with
height).

Y = Zenith Radiance, Radar reflectivity

H = lognormal cloud droplet distribution, 3D
radiative transfer




Using the Iterative Ensemble Kalman
Filter as a Gauss-Newton method

* Typically, Gauss-Newton methods use the error covariance and
observation operator matrices explicitly to minimize a cost function:

J(x) = (x —x,)"B™1(x— x) + (y — HX)) R (y — H(x))

Pros

*Easy to code, does not require
adjoint of forward model

*Ensemble retains error statistics

*Potentially avoids local minima in
non-linear problems by
approximating gradient over a spread
of points

Cons

*Expensive (requires a forward model
calculation for each ensemble member
at each iteration)




concentration

computational cost
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Method — Step 2 (Reflectivity matching)

ipients

Rec

match columns of radar

’

Similar to Barker et al. 2011
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Assign donor column’s number concentration to recipient




Method — Step 2 (Reflectivity matching)

concentration

Calculate effective radius and LWC in recipient column
using assigned number concentration and recipient’s

reflectivity and lognormal droplet distribution
assumption.




Method key points

* First cloud retrieval to combine ground-
based radar and zenith radiances

* First cloud retrieval to include 3D
radiative transfer as a forward model

* First cloud retrieval to use the Iterative
Ensemble Kalman Filter as an optimal
estimation framework




Evaluation using trade wind shallow cumulus
generated by large eddy simulation

* Retrieval performs well, RMSE in LWP ~20 g m2

e Adding water-absorbing wavelength (e.g., 1640 nm)
improves retrieval
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Retrieval cross-section along track of radiances
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Example SCu
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Microwave
radiometer

retrieval
RMSD ~20 g
m-2

UTC (hours)

2NFOV
radiance-only

retrieval
RMSD ~6




Summary

New method to provide 3D cloud fields in overcast
and broken-cloud — key step to understand 3D effects

Verified using LES
shallow cumulus

Good agreement with
independent LWP in
stratocumulus case

Flexible ensemble

optimal estimation
framework
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Limit of
radar
sensitivity

Microwave
radiometer
retrieval is
negative
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Cu case, Azores, 215t November 2009
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Sc case, Azores, 28" November 2009

radar reflectivity (dBZ) number concentration (cm-3)
2
N
0 -50 ;
effective radius (ym) liquid water content (gm ™)

0 1 2 3 4 5




