Retrieving cloud microphysical properties in a fully 3D environment using active and passive sensors

Mark Fielding
Robin Hogan, Christine Chiu
With thanks: Graham Feingold

Why do we need 3D observations of (warm) clouds?

- Clouds are fundamental to Earth's radiation budget
- Need 3D observations to unravel processes
 e.g., cloud structure affects radiative transfer
- Help provide observational constraints for realistic cloud and radiation parameterizations in global circulation models.

How can we observe clouds in 3D?

- Problem: Scanning cloud radar provides cloud structure but not droplet size
- Solution: combine scanning cloud radar (Ka/W-band) with spectral (shortwave) zenith radiances
 - Exploit relationship between radiance and optical depth, but also account for 3D effects

Scanning cloud radar

Spectroradiometer

Method – Grid observations

- Allow clouds to advect across observation site
- Cross-Wind RHI scan optimum for shallow cumulus*

Method – Step 1 ('Supercolumn' retrieval)

 Supercolumn size limited to area of domain constrained by the track of radiances

Define state, observations and forward models

X = 3D field of cloud effective radius, 2D field of number concentration (assume constant with height).

Y = Zenith Radiance, Radar reflectivity

H = lognormal cloud droplet distribution, 3D radiative transfer

Using the Iterative Ensemble Kalman Filter as a Gauss-Newton method

• Typically, Gauss-Newton methods use the error covariance and observation operator matrices explicitly to minimize a cost function:

$$J(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + (\mathbf{y} - H(\mathbf{x}))^T \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

Pros

- •Easy to code, does not require adjoint of forward model
- •Ensemble retains error statistics
- •Potentially avoids local minima in non-linear problems by approximating gradient over a spread of points

Cons

•Expensive (requires a forward model calculation for each ensemble member at each iteration)

Method – Step 1 ('Supercolumn' retrieval)

- Supercolumn size limited to area of domain constrained by the track of radiances
- Supercolumn size limited by computational cost

Method – Step 2 (Reflectivity matching)

- Similar to *Barker et al.* 2011, match columns of radar reflectivity outside the supercolumn (recipients) to columns inside supercolumn (donors).
- Assign donor column's number concentration to recipient column.

Method – Step 2 (Reflectivity matching)

 Calculate effective radius and LWC in recipient column using assigned number concentration and recipient's reflectivity and lognormal droplet distribution assumption.

Method key points

- First cloud retrieval to combine groundbased radar and zenith radiances
- First cloud retrieval to include 3D radiative transfer as a forward model
- First cloud retrieval to use the Iterative Ensemble Kalman Filter as an optimal estimation framework

Evaluation using trade wind shallow cumulus generated by large eddy simulation

- Retrieval performs well, RMSE in LWP ~20 g m⁻²
- Adding water-absorbing wavelength (e.g., 1640 nm) improves retrieval

Retrieval cross-section along track of radiances

Example SCu

Microwave radiometer retrieval RMSD ~20 g m⁻²

Radiance track

2NFOV radiance-only retrieval RMSD ~6

Summary

- New method to provide 3D cloud fields in overcast and broken-cloud – key step to understand 3D effects
- Verified using LES shallow cumulus
- Good agreement with independent LWP in stratocumulus case
- Flexible ensemble optimal estimation framework

Example (2) - Cu

Limit of radar sensitivity

Microwave radiometer retrieval is negative

2NFOV retrieval only physical for larger Cu clouds

Cu case, Azores, 21st November 2009

Sc case, Azores, 28th November 2009

