

Extension of the CREWtype Analysis to VIIRS

Andrew Heidinger, Andi Walther, Yue Li and Denis Botambekov NOAA/NESDIS and UW/CIMSS, Madison, WI, USA

CREW-4 Grainau, Germany, March 2014

Motivation

 Important time in VIIRS cloud products. Almost all operational agencies are getting ready to official release VIIRS cloud products.

Goals

- Conduct a comparison of VIIRS Cloud Products like was done for SEVIRI in past CREW Workshops.
- Facilitate discussions between VIIRS algorithm developers.
- Only a sample of results shown here, full results are available.

The VIIRS Sensor

- Launched by NASA on the Suomi-NPP Mission in 2011 (right after CREW3). Will be the operational NOAA polar imager.
- VIIRS offers a nearly full complement of solar reflectance channels but provides only the 8.5, 11 and 12 μm channel in the Far-IR.
 - Many multi-layer and cloud-height approaches developed with MODIS don't apply.
- The most unique feature of VIIRS is the Day/Night Band (DNB) which offers well-calibrated and very sensitive observations of lunar reflectance. Image on left shows a DNB-DNB-11µm (rev) false color image from Mar 29, 2012.
- VIIRS M-bands have a spatial resolution of 750m that grows in size with angle but only by a factor of 2.
- VIIRS I-bands provide multiple channels at 375 m.
- Several groups are working on CrIS + VIIRS data sets.

Data Providers

- IDPS = Official VIIRS cloud products developed by Private Industry for the JPSS program.
- CLAVR-x = NOAA Algorithms (aka PATMOS-x)
 - **DCOMP** = optical depth and particle size algorithm in CLAVR-x
 - **ACHA** = cloud height algorithm in CLAVR-x
- MODAWG = The NASA GSFC MODIS + NOAA AWG suite of VIIRS cloud products
- **PPS** = Polar Platform System from SMHI and NWCSAF
 - **CPP** = cloud optical depth and particle size in PPS
- LARC = NASA LaRC VIIRS products

What is a CREW-type Analysis

Pixel-level comparisons of mask, phase, height, optical depth and particle size.
Images showing the controversial pixels
The N x N matrix of scatter-plots.
A document is available will all results.

For this talk, we'll show only subset of results.

CLOUD MASK COMPARISON

September 26, 2013 (Daytime)

Land Class

Snow Class

11 μm B.T (K)

0.65 μm Refl. (%)

Cloud Mask					
Clear Water	Clear Land	Prob. Clear	Prob. Cloudy	Cloudy	Unknown

black = clear / blue = water / white = ice

CLOUD OPTICAL DEPTH COMPARISON

Cloud Optical Depth 09/26 0.65 μm IDPS GSFC CLAVR-x/DCOMP PPS/CPP LARC

Cloud Optical Depth

míssing	0	1	2	4	6	10	12
14	16	20	25	30	40	50	60

Cld. Optical Depth Ice Phases 09/26

- Less agreement than water (expected)
- Highest correlation is GSFC and CPP.
- Lowest correlation is DCOMP and IDPS.
- DCOMP shows largest bias.
- IDPS shows low values for a wide range of values of other data.

I[mean: media stddev #: 8	DPS 20.6 n: 6.3 /: 62.8 3616798	DCOMP IDPS bias: 6.2 rmse: 49.0 corr: 0.55 #: 6701630	GSFC IDPS bias: -5.7 rmse: 38.5 corr: 0.69 #: 5472435	CPP IDPS bias: 2.7 rmse: 46.9 corr: 0.60 #: 6818046
50 40 30 20 10 0 10 0 10 20 0 10 20 0 10 20 20 10 20 20 10 20 20 10 20 20 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	DCOMP 0 30 40 50	DCOMP mean: 27.0 median: 7.8 stddev: 43.7 #: 11082000	GSFC DCOMP bias: -11.2 rmse: 25.3 corr: 0.85 #: 6773061	CPP DCOMP bias: -1.7 rmse: 35.3 corr: 0.78 #: 7389615
	C 30 40 50		GSFC mean: 14.2 median: 5.9 stddev: 25.8 #: 7427165	CPP GSFC bias: 6.0 rmse: 26.7 corr: 0.88 #: 5701590
	S CPP 44 34 20 10 30 40 50		50 60 60 60 60 60 60 60 60 60 6	CPP mean: 25.7 median: 5.1 stddev: 61.0 #: 9325580

CLOUD PARTICLE SIZE COMPARISON

Cloud Effective Radius (09/26) Comparison for September 26, 2013 **IDPS** GSFC CLAVR-x/DCOMP PPS/CPP LARC $0.65 \,\mu m$

Cloud Effective Radius (micron)

Cld. Particle Size All Phases 09/26

- Small particle mode for IDPS apparent.
- CPP shows
 preferred values
- Highest correlation GSFC and DCOMP
- Lowest correlation CPP and IDPS
- Lowest numbers
 are for IDPS
- Highest numbers for DCOMP.

IDPS mean: 27.9 median: 22.5 stddev: 26.9 #: 21294340	DCOMP IDPS bias: -9.3 rmse: 24.1 corr: 0.43 #: 20002664	GSFC IDPS bias: -5.1 rmse: 20.5 corr: 0.39 #: 16274544	CPP IDPS bias: -8.2 rmse: 25.4 corr: 0.28 #: 20498744
50 40 40 30 40 50 50 50 50 50 50 50 50 50 5	DCOMP mean: 19.5 median: 16.2 stddev: 10.4 #: 30223780	GSFC DCOMP bias: 1.7 rmse: 8.4 corr: 0.72 #: 21061088	CPP DCOMP bias: -0.2 rmse: 8.5 corr: 0.61 #: 24616488
50 40 30 20 10 0 0 10 20 30 40 50	50 DCOMP GSFC 10 0 10 20 30 40 50	GSFC mean: 20.2 median: 17.0 stddev: 11.6 #: 22279082	CPP GSFC bias: -1.7 rmse: 8.9 corr: 0.66 #: 19075822
			CPP mean: 17.7 median: 15.3 stddev: 9.8 #: 28177748

Cld. Particle Size All Phases 09/26

Cld Opd > 4

- These results show impact of removing cloud optical depth < 4.
- CPP artifacts largely disappear.
- IDPS artifacts remain.
- This means IDPS is not converging for clouds with optical depth > 4 because QF filter removes them.

IDPS mean: 21.0 median: 18.8 stddev: 16.1 # : 15151765	DCOMP IDPS bias: -3.3 rmse: 12.6 corr: 0.61 #: 13870549	GSFC IDPS bias: -1.1 rmse: 10.9 corr: 0.61 #: 11363022	CPP IDPS bias: 0.0 rmse: 9.7 corr: 0.74 #: 12906358
50 10 10 10 10 10 10 10 10 10 1	DCOMP mean: 18.7 median: 15.6 stddev: 9.4 #: 19590540	GSFC DCOMP bias: 1.1 rmse: 7.3 corr: 0.75 #: 13803505	CPP DCOMP bias: 2.6 rmse: 7.3 corr: 0.74 #: 14208885
50 40 40 40 40 40 40 40 40 40 40 40 40 40		GSFC mean: 18.8 median: 15.5 stddev: 10.9 #: 14321065	CPP GSFC bias: 1.0 rmse: 7.6 corr: 0.73 #: 11961953
50 40 40 40 40 40 40 40 40 40 40 40 40 40		50 60 60 60 60 60 60 60 60 60 6	CPP mean: 20.6 median: 18.9 stddev: 10.1 #: 15276673

CLOUD HEIGHT COMPARISON

March 29, 2013 (Nighttime)

Cloud Height Comparisons using CALIPSO shown for this Scene

Land Class

Snow Class

11 μm BT (K) DNB +

DNB + 11 μm RGB

Cloud-top Height (km)

CALIPSO Comparison 03/29

CALIPSO cross-section. Grey is cloud from CALIPSO. Colored circle are VIIRS cloud heights.

21

CALIPSO Comparison 03/29 – No Phase Filter

22

CALIPSO Comparison 03/29 - Phase Filter

Bias Distribution 03/29 – No Phase Filter

24_

Conclusions

- Thank you for the data!
- If you have VIIRS retrievals (especially for these scenes), please share.
- Issues that plagued the SEVIRI analysis remain.
 - Differences in Cloud Mask and Cloud Phase
 - Cloud optical depth over snow
 - Cloud particle size performance for thin clouds
 - Cloud height performance in complex vertical structures.