

Enhancing the PPS cloudmask confidence in the polar night with the VIIRS DNB

Adam Dybbroe & Ronald Scheirer, SMHI

CREW-4, Grainau, Germany, March 2014

Outline

- Current performance of PPS
- When nighttime detection is hard
- Using DNB data over sea
- What about land?
- Conclusion

PPS v2014 cloudmask performance

From one year of locally received S-NPP, N18 and N19 at Norrköping, Sweden, co-located with Calipso

PPS v2014 cloudmask performance against Caliop

	Bias (%)	HR	POD	FAR	Ν
All	-10.3	0.84	82.4	4.3	796127
All (τ>0.2)	-7.6	0.87	85.4	4.5	744634
Day	-5.5	0.87	88.0	5.0	296080
Night	-12.1	0.83	79.6	4.0	360476
Twilight	-15.7	0.80	77.2	3.4	139571

 τ > 0.2: An observation is considered cloudy only if the Caliop cloud optical thickness is greater than 0.2

Significant drop in cloud detection at night and twilight

	Bias (%)	HR	POD	FAR	Ν
All	-10.3	0.84	82.4	4.3	796127
All (τ>0.2)	-7.6	0.87	85.4	4.5	744634
Day	-5.5	0.87	88.0	5.0	296080
Night	-12.1	0.83	79.6	4.0	360476
Twilight	-15.7	0.80	77.2	3.4	139571

Over sea:

	HR	POD	FAR	Ν
Day	0.89	94.8	11.2	30150
Night	0.81	73.5	5.6	34838
Twilight	0.83	81.3	8.6	12672

Open Water pixels only

Sea Ice pixels only

	HR	POD	FAR	Ν
Day	0.91	98.5	10.2	25943
Night	0.93	94.4	3.3	16793
Twilight	0.87	87.7	2.8	3520
	HR	POD	FAR	Ν
Day	0.73	60.9	7.3	3185
Night	0.69	40.2	2.2	16100
Twilight	0.82	77.4	10.0	8414

All data filtered using the requirement $\tau > 0.2$

When IR-only detection is hard

- Sea ice
- Cold land (NWP often too warm)
- Thin cirrus over low clouds
- Low (warm) water clouds with large droplets
- Low (warm) mixed phase clouds

Two examples

- Barents and Kara Seas Sea ice, Moonglint, Straylight, Aurora Borealis,
- North Atlantic

RGB: 3.7;11;12µm

PPS Cloud Type

S-NPP 2014-01-22 02:01 UTC

Moon elevation 18°

Moon elevation 5°

Moon phase = 65°

DNB lunar reflectance

PPS Cloud Type

RGB: DNB, DNB, M15

PPS Cloud Type

Highlighting the cloudfree (sea ice free and moonglint free) pixels with high lunar reflectance (r>0.25):

Grey=Cloudy according to PPS Redish=High lunar reflectance

RGB: 3.7, 11, 12 µm

North Atlantic

DNB lunar reflectance

S-NPP 2014-02-15 01:11 UTC

North Atlantic

Zoom in on partly missed low broken clouds over the Norwegian Sea

PPS Cloud Type

S-NPP 2014-02-15 01:11 UTC

Missed low broken clouds

Grey=Cloudy according to PPS Reddish=High lunar reflectance RGB: 3.7, 11, 12 µm

Missed low broken clouds

Grey=Cloudy according to PPS Reddish=High lunar reflectance

RGB: DNB, DNB, M15

Lunar reflectance data aiding cloud detection over open water at high latitudes

Prominent error sources:

- Auroras
- Lights from ships and off shore industry
- Straylight
- TOA lunar irradiance model
- Moonglint

Aurora forecasting

www.gi.alaska.edu/AuroraForecast/NorthPolar/2014/01/22

~ 🔁

8 ✓ Aurora prediction

Aurora Forecast for Wednesday, January 22, 2014

<< Previous

Next >>

Short term (1hr) Aurora Forecast

Sorry, the short-term forecast is out of date. Please try again later.

Current Aurora Activity

NOAA/POES

Auroral Activity by Solar Rotation

Viewing the Aurora in the Northern Summer Interpreting the Forecast Traveler's Guide to the Aurora Online Aurora Forum Aurora Links Aurora Alerts Sign-up FAQ Mobile Apps

Can I see the Aurora?

Moderate: 0 1 2 3 4 5 6 7 8 9

Forecast: Auroral activity will be moderate. Weather permitting, moderate

Land?

- Snow: Need for accurate land surface reflectance map (snow cover is a proxy but may be insufficient)
- City lights and other man made light sources – can be masked to some extent but may also be a source of information

Persistent light sources

Average radiance under cloudfree and dark conditions (no moon & no sun) – composite from 73 S-NPP scenes from May to Oct 2013

Clouds obscure and scatters the light

DNB radiance: 2014-02-03 01:36 UTC

Clouds obscure and scatters the light

DNB radiance: 2014-02-03 01:36 UTC

RGB 3.7;11.12 µm

Conclusion

- There is scope for improving the PPS cloudmask over sea using lunar reflectance data
- Mainly picking up undetected cloudy pixels
- Moonlight is required the polar winter night is favored by moonlight

Conclusion

- The usefulness of DNB data in cloud masking over sea ice and land is less obvious
- ...but the full potential of these data are yet to be uncovered

Acknowledgments: Andi Walther and Steven Miller

