What did we learn from the **GEWEX Cloud Assessment ?**

Claudia Stubenrauch

Laboratoire de Météorologie Dynamique, IPSL/CNRS, France

GEWEX Cloud Assessment Team:

S. Kinne, W. B. Rossow, S. Ackerman, G. Cesana, H. Chepfer, L. Di Girolamo, B. Getzewich, A. Guignard, A. Heidinger, B. C. Maddux, W. P. Menzel, P. Minnis, C. Pearl, S. Platnick, C. Poulsen, J. Riedi, S. Sun-Mack, A. Walther, D. Winker, S. Zeng, G. Zhao

Outline

- Challenges to retrieve cloud properties
- GEWEX Cloud Assessment (2005-2012)
- ➢ GEWEX Cloud Assessment Database (≥ Nov 2012) L2 -> L3 aggregation
- >What do we know about clouds from satellite retrievals ?
- Challenges in longterm monitoring
- How to use satellite cloud data for climate model evaluation?
- >How to get a more complete cloud picture?
- Conclusions and recommendations

Challenges to retrieve cloud properties

Clouds are extended objects of many very small liquid / ice particles

Cirrus (high ice clouds)

satellite radiometers

bulk quantities

at spatial & temporal scales to resolve weather & climate variability Cloud structures over Amazonia

Cumulus (low fair weather clouds)

Cumulonimbus (vertically extended)

Copyright: 1998 Wadsworth Publishing Company; C. Donald Ahrens, Essentials of Meteorology

Cloud properties from space

lidar – radar : vertical structure of clouds

IR-NIR-VIS Radiometers, IR Sounders, multi-angle VIS-SWIR Radiometers exploiting different parts of EM spectrum

- ➢ information on uppermost cloud layers
- 'radiative' cloud height
- >perception of cloud scenes depends on instrument

=> cloud property accuracy scene dependent :

most difficult scenes: thin Ci overlying low clouds, low contrast with surface (thin Ci, low cld, polar regions)

GEWEX Cloud Assessment

GEWEX Cloud Assessment Milestones

Assessments essential for climate studies & model evaluation

initiated by GEWEX Radiation panel (GRP)

2005-2010: 4 workshops :

2005: focus on longterm anomalies (co-chairs: G. Campbell, B. Baum)
 2006: focus on cloud amount (co-chairs: B. Baum, C. Stubenrauch)
 2008: first intercomparison of cloud property statistics (co-chairs: C. Stubenrauch, S. Kinne)
 2010: first assessment using L3 monthly gridded cloud data

- **2009-2011: Preparation and quality check of common L3 data base** *monthly statistics (averages, variability, histograms) in netCDF format*
 - 2012: Results & description of datasets : WCRP report, BAMS article opening of L3 data base to public *http://climserv.ipsl.polytechnique.fr/gewexca*

global gridded L3 data (1° lat x 1° long) : monthly averages, variability, Probability Density Functions

ISCCP GEWEX cloud dataset	1984-2007	(Rossow and Schiffer 1999)
MODIS-ScienceTeam	2001-2009	(Menzel et al.2008; Platnick et al. 2003)
MODIS-CERES	2001-2009	(Minnis et al. 2011)
TOVS Path-B	1987-1994	(Stubenrauch et al. 1999, 2006; Rädel et al. 2003)
AIRS-LMD	2003-2009	(Stubenrauch et al. 2010; Guignard et al. 2012)
HIRS-NOAA	1982-2008	(Wylie, Menzel et al. 2005)
relatively new retrieval version	ns:	

PATMOS-x (AVHRR)	1982-2009	(Heidinger et al. 2012, Walther et al. 2012)
ATSR-GRAPE	2003-2009	(Sayer, Poulsen et al. 2011)

complementary cloud information:

CALIPSO-ScienceTeam	2007-2008	(Winker et al. 2009)
CALIPSO-GOCCP	2007-2008	(Chepfer et al. 2010)
MISR	2001-2009	(DiGirolamo et al. 2010)
POLDER	2006-2008	(Parol et al. 2004; Ferlay et al. 2010)

http://climserv.ipsl.polytechnique.fr/gewexca

> facilitates assessments, climate studies & model evaluation

properties:

- cloud amount
- pressure/ height •
- temperature •
- IR emissivity •
- eff cloud amount •
- VIS optical depth •
- Water path •
- eff part. radius •

(GCC	JS ECV'S)	
CA	(0.01-0.05)	+ rel. cloud type amoun
CP/CZ	(15-50 hPa)	
СТ	(1-5 K)	
CEM		
CAE	(= cloud amoul	nt weighted by emissivity)
COD		
CLWP/C	CIWP (25%)	
	CRE (5-10	7%)

1° x 1° monthly statistics per obs time: monthly variability, • histograms • averages, distinguish : tot, High, Mid, Low Water, Ice CP< 440 hPa. CP>680hPa CT>260K, CT<260 / 230K

GEWEX CA L2 -> L3 Aggregation at specific local time

What are the properties of the cloud when present within 1°x1°?

discussed & agreed upon at workshop in 2010

\checkmark first average over space (1° x 1°) & then over time (month)

 ✓ at higher latitudes with orbit overlaps, choose measurements closest to local observation time (keep data with smallest viewing angle)

Data processing by teams (Fortran program was provided)

- > cloud properties do not depend on instantaneous measurement & cloud grid coverage
- > appropriate way to compare data of different spatial resolution and to compare to climate models

difference in CA small, but larger (& systematic) for other properties, depending on cloud scenes

Key results

Global averages & ocean-land differences

Cloud Amount (Cover): 0.68 ± 0.03

for clouds with COD>0.1

+ 0.05 subvisible Ci, \rightarrow 0.56 (clds with COD > 2)

synoptic (day-to-day) variability : 0.25-0.30 inter-annual variability : 0.025

0.10-0.15 larger over ocean than over land

Effective Cloud Amount: 0.50 ± 0.05 (weighted by cloud IR emissivity)

synoptic (day-to-day) variability : 0.26-0.28

0.05-0.12 larger over ocean than over land

Cloud 'radiative' Temperature: 260 ± 2 K synoptic (day-to-day) variability : 15-20 K

inter-annual variability : 2 K

7-9 K warmer over ocean than over land

Cloud Top Temperature (including subvis Ci): 250 K

CALIPSO only considers uppermost layers to better compare with other datasets

CAHR (hgh clds out of all clds) depends on sensitivity to thin Ci (30% spread)

42% are high clouds (COD>0.1) -> 20% with COD>2 (MISR, POLDER)

eff high cloud amount agrees : 0.17 -> another sign of missing thin cirrus

16% (±5%) are midlevel clouds

thin Ci over low cloud misidentified as midlevel clouds by ISCCP, ATSR, POLDER

42% are single-layer low clouds, **60%** are low clouds (MISR, CALIPSO, surface observer)

20% more low clouds over ocean; 10% more high / midlevel clouds over land, optically thinner over land, -> effective cloud amount similar

Latitudinal & seasonal variations

Even if absolute values depend on Ci sensitivity, geographical cloud distributions agree

Height stratification

Retrieval of T, p or z:

T : ISCCP, PATMOSx, MODIS-CE p : AIRS, HIRS, MODIS-ST, POLDER, ATSR z : CALIPSO, MISR & atmospheric profiles : T->p, p->T,z->T retrieved (Op. TOVS, TOVS Path-B, AIRS) reanalysis (NCEP), forecast (GMAO, ECMWF)

bimodal T/p distributions in tropics

CALIPSO -> cloud top + sensitive to subvis Ci => should point to coldest CT

 ISCCP peak at smaller CT corresponds to very thin Ci which has been put to the tropopause

■5 K spread for low- level clouds

I5 K spread for high-level clouds: diffusive cloud tops

Influence of atmospheric profiles on CP

example AIRS-LMD: NASA V6 profiles, ERA Interim

land-0130PM

Challenges in longterm monitoring

Monitoring of Earth coverage / day at specific obs

Climate change studies: be aware of temporal changes in coverage!

Interannual variability increases with decreasing Earth coverage!

Global CA / CT anomalies in time

global CA within ±0.025, CT within ±2K (~ interannual mean variability)

Investigation of possible artifacts in ISCCP cloud amounts (W. B. Rossow, Ann. 2 of WCRP report) Changes in radiance calibration, geographic & day-night coverage, satellite viewing geometry reduce magnitude of CA variation only by 1/3

merging different instruments / satellites challenging

-> look at histograms / regions

Applications: assessment of other datasets evaluation of climate models cloud radiative effects

Cloud Assessment Database to assess other datasets

ESA Cloud CCI: creating longterm cloud dataset from AVHRR, MODIS, ATSR

(Retrieval based on Optimal estimation)

compare to GEWEX CA reference: ISCCP, PATMOSx, MODIS-ST, MODIS-CE, AIRS-LMD

underestimation of CA over ocean in 60N-60S (3-5 σ from ref)

underestimation of CAHR over land, SH midlat. (2-4 σ from ref)

GEWEX average ATSR-GRAPE ESACCI CALIPSO-ST ESACCI CALIPSO-GOCCP

bimodal T/p distributions in tropics : not observed by ESACCI due to missing cirrus

A. Feofilov, LMD

Comparison to climate models

Satellite observations view clouds from above:

> passive remote sensing only gives information on uppermost clouds

➤observations at specific local time

instrument & retrieval method sensitivity, retrieval filtering, partial cloudiness may lead to biases

Climate models prescribe cloudiness per pressure layer (H₂O saturation)

>clouds built from adjacent layers & max / random overlap per lat x long grid

✓ filter local time, cloud detection sensitivity (in optical thickness)

✓ cloud property grid averages from cloud overlap scheme

Satellite Simulators or simpler methods take care of these issues However, they can not repair insufficient instrument / retrieval sensitivity

IWP: latitudinal average

IWP averages are difficult to compare, large spread between datasets

IWP histograms

Single scattering properties in radiative transfer depend on thermodynamical phase / particle shape

averages & distributions strongly depend on retrieval filtering & partly cloudy fields (MODIS-ST, ATSR retrieval filtering COD > 1, AIRS COD < 4)

essential to be taken into account when comparing to models!

Cloud Assessment Database to determine cloud radiative effects

assessing cloud climatologies in terms of TOA fluxes (ESA Cloud CCI phase 2)

1) determine radiative fluxes of 7 x 7 cloud types over the globe, at different seasons

Cloud Radiative Effect per cloud type (Chen et al. 2000)

2) weight fluxes by COD-CP histograms (monthly 1° x 1° map resolution)

ISCCP	0.21	0.09	0.04	PATMOSx	0.13	0.17	0.08	AIRS-LMD	0.29	0.11	0.0
	0.13	0.11	0.03		0.03	80.0	0.06		0.12	0.06	0.0
	0.19	0.18	0.03		0.24	0.18	0.03		0.17	0.24	0.0

differences in COD-CP distributions lead to differences in radiative effects (transformation of IR emissivity to COD -> COD < 10 => underestimation of SW effect)

IR-VIS Synergy -> multi-layer clouds

IR Sounder - Imager Synergy: multi-layer situations in daylight

from CALIPSO-ST :

single-layer semi-transparent Cirrus (COD<3)

semi-transparent Cirrus above lowlevel clouds

high cloud amount AIRS-LMD - MISR Jan 2009

low cloud amount AIRS-LMD - MISR Jan 2009

IR sounding provides high-level & VIS provides low-level clouds

Conclusions

GEWEX Cloud Assessment (2005-2012):

• first coordinated intercomparison of L3 cloud products of 12 global 'state of the art' datasets

• common database facilitates further assessments, climate studies & model evaluation

➤ tremendous joint effort to build consistent database:

1) developing of strategy for L2 -> L3 processing (2010 workshop)

2) each team followed given code for L2 -> L3 processing

3) Iterative process:

analyses -> problems in some variables (averages or histograms) -> feedback to teams -> correction by teams & sending in new data

some inconsistencies in L2->L3 processing remained in MODIS; MODIS-CE histograms not usable...

building of database was necessary, because not many coherent publications for comparison

utility of database so far:

worthwhile for improvement of existing datasets & for assessment of new datasets
 > too early to see impact on model evaluation & climate studies
 (questions arising from users)

This kind of assessment should be repeated when enough new material available; building of database should be much easier, because of GEWEX Cloud Assessment heritage

Update & Maintenance of Database

agreed with IPSL ClimServ:

>all participating teams are welcome to provide updated (published) versions

New teams may send in their data, if processed in the same manner (like ESA Cloud CCI data)

http://climserv.ipsl.polytechnique.fr/gewexca

Recommendations to CREW

> CREW workshops give an excellent platform for exchange

Interconnection of teams inbetween ?

>detailed L2 assessments are essential

especially when well synthesized :

coordinated investigations on:

impact of atmospheric profiles (T, Tsurf)

phase misidentification

horizontal / vertical inhomogeneity

> estimation of L2 uncertainties is very important

biases are often scene dependent; difficulty lies in knowing the scene

L2->L3 aggregation:

in general, it would be good to take into account strategies already developed most appropriate method depends on application study will be very useful for uncertainty propagation

variable	ISCCP	PATIMOSX	HIRS-	TO/SB	AIRS-	MODIS	MODIS	MISR	POLDER	ATSR-	CALIPSO-	CALIPSC
			NOAA		LMD	-ST	-CE			GRAPE	ST	GOCCP
CA	ash	as	a	ash	ash	ash	ash	а	ash	ash	ah	ah
CAH	as	as	а	as	as	as	as	а	ash		а	а
CAM	as	as	а	as	as	as	as	а	ash		а	а
CAL	as	as	а	as	as	as	as	а	ash		а	а
CAW	as	as		as	as	as	as		ash		а	
CAI	as	as		as	as	as	as		ash		а	
CAIH	as	as		as	as		as		ash		а	
CAE	ash	as	а	ash	ash	ash	ash		ash			
CAEH	as	as	а	as	as		as					
CAEM	as	as	а	as	as		as					
CAEL	as	as	а	as	as		as					
CAEW	as	as		as	as		as					
CAEI	as	as		as	as		as					
CAEIH	as	as		as	as		as					
CAHR	as	а	а	as	as	a	as	a	ash	as	a	а
CAMR	as	а	а	as	as	а	as	а	ash	as	а	а
CALR	as	а	a	as	as	а	as	a	ash	as	а	а
CAWR	as	а		as	as	а			ash	as	а	
CAIR	as	а		as	as	а			ash	as	а	
CAIHR	as	а		as	as	а			ash		а	
CP	ash	ash	ah	ash	ash	ash	as		ash	ash		
cz	ash				ash		ash	ah	-	-	ah	ah
ст	ash	ash	ah	ash	ash	ash	as			ash	ah	ah
стн	ash	ash	а	ash	ash		as			ash	ah	ah
стм	ash	ash	a	ash	ash		45 26			ash	ah	ah
CTI	ash	ash	a	ash	ash		as			ash	ah	ah
	ash	ash	u	ash	ash	ach	45 26			ash	ah	un
	ach	ash		ach	ach	ach	20			ach	ah	
	ash	ash		ash	ash	asii	25			ash	ah	
CEM	ash	ash	2	ash	ash	ach	20			ach	an	
	asii	ash	a	asii	asii	asii	a5 00			ash		
	ash	ash	a	ash	ash		d5 20			ash		
	asii	ash	a	asii	asii		45			ash		
	asn	asn	a	asn	asii		45			asn		
	asn	ash		asn	asn		as					
	asn	asn		asii	asn		45					
	asn	ash		asn	asn	aab	as		aab			
	asn	asn		asn	asn	asn	asn		asn	asn		
CODH	ash	ash		as	asn	asn	as		asn	asn		
	asn	asn		as	asn	asn	as		asn	asn		
CODL	asn	ash		as	asn	asn	as		asn	asn		
CODW	asn	asn		as	asn	asn	asn		asn	asn		
	asn	asn		as	asn	as	asn		asn	asn		
CODIH	ash	ash		as	ash	ash	as		asn	asn		
CLWP	ash	ash				ash	ash			ash		
CIWP	ash	ash		<u> </u>	<u> </u>	ash	as			asn		
CIWPH	ash	ash		ash	ash	+	as			ash		
CREW	ash	ash				ash	ash			ash		
CREI	ash	ash				ash	ash			ash		
CREIH	ash			ash	ash	ash	as			ash		
COD/CP	х	х		x	х				х	х		
CODW/CP						x						
CODI/CP				х	х	х						
CEM/CP	x	х		х	x	x						
CODWCREW	x	~				x						
CODICRE	x	х		x	x	x						
CEMICREI	x	x		x	x							

56 variables

a: averages

s: variability

h: histogram

12 datasets

2 – 25 years

≤ 4 observation times

zipped: 160 Gb unzipped: 1.4 Tb

histograms of MODIS-CE not usable

Thermodynamic phase & retrieval of optical / microphysical properties

Retrieval of optical / bulk microphysical properties needs thermodynamic phase distinction:

$$\begin{split} R_{VIS} & \rightarrow COD \\ R_{VIS} & R_{SWIR} \rightarrow COD & CRE \quad (smaller particles reflect more) \\ \underline{assumptions in radiative transfer:} \quad particle habit, size distribution, phase \\ WP &= 2/3 \ x \ COD \ x \ \rho \ x \ CRE \ (vertically hom.) \end{split}$$

IR: small ice crystals in semi-transparent Ci lead to slope of CEM's between 8 & 12 μm

Bulk microphysical properties

Single scattering properties in radiative transfer depending on thermodynamical phase / particle shape

Effective Cloud Particle radii: Liquid: $14 \pm 1 \mu m$ Ice: $25 \pm 2 \mu m$

differences linked to retrieval filtering of optically thicker clouds & less to different channels (3.7 / 2.1 / 1.6 μm) -> only retrieved near cloud top

When considering *retrieval filtering* or *partly cloudy pixels / ice-water misidentification*, distributions agree well .