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•  What do we need to retrieve? 
•  Importance of classification 
•  A-Train, EarthCARE and unified retrieval algorithms 
•  General synergy retrieval framework 
•  Sources of uncertainty 
•  Ice retrievals 

–  Radar plus: lidar, another radar, Doppler… which is best? 
–  Importance of radar scattering model 

•  Liquid cloud retrievals 
–  The problem of drizzle 
–  Potential exploitation of multiply scattered signal from Calipso 

•  A mixed-phase case 
•  Outlook 

This talk is limited to satellite measurements 
No cost functions will be shown in this talk 



•  Interaction of clouds with natural radiation depends on: 
–  First-order importance: extinction coefficient βe 

•  If           : 

•  Valid for SW ice & liquid, LW ice (but liquid clouds often black bodies) 
–  Second-order importance: asymmetry factor, single-scattering albedo 

•  Models predict or diagnose: 
–  Liquid water content, ice water content, cloud fraction 
–  Rain rate, snowfall rate, ice/snow/rain fall speed 

•  Also need measures of particle size: 
–  Effective radius is used by models: 

•  To convert ice/liquid water content to extinction coefficient: 
•  To parameterize asymmetry factor, single-scattering albedo 

–  Physical size (e.g. for fall-speed calculation) 
•  Note that ice effective radius is typically much less than physical size

 (~50 µm vs. ~1 mm) 



•  “Unified” retrieval (for EarthCARE) provides
 microphysical properties for all target types 
–  Error estimates include contribution from

 measurement and model error 
–  Looks impressive but is it right? Illingworth et al. (BAMS 2014) 

Classification: 
 Ceccaldi et al. (JGR 2013) 



•  Compared to the A-Train, EarthCARE (launch 2016) has: 
–  7-dB more sensitive radar with Doppler capability 
–  High spectral resolution lidar: better extinction profiles 
–  Imager (like MODIS) and broad-band radiometer (like CERES) 



•  One measurement → one retrieved variable via empirical relationship 
–  E.g. IWC(Z) 

•  Two measurements → two retrieved variables 
–  Second measurement (e.g. another wavelength, Doppler) often doesn’t

 give independent information all the time 
–  Top tip: make one of the retrieved variables a measure of (normalized)

 number concentration with good prior (e.g. temperature) 
–  Then automatically falls back to best one-measurement retrieval 

•  Three measurements… 
–  Can we get a handle on other    

  variables, e.g. ice density,    
  particle habit? 

Field et al. (2005) 



There are known knowns.
 These are things we know that
 we know. 

There are known unknowns.
 That is to say, there are things
 that we know we don't know. 

But there are also unknown
 unknowns. There are things
 we don't know we don't know.  

Donald Rumsfeld 



•  The known knowns, things we know so well no error bar is needed 
–  Drops are spheres, density of water is 1000 kg m-3 

•  The known unknowns, things we can explicitly assign an well
-founded error bar to in a variational retrieval 
–  Random errors in measured quantities (e.g. photon counting errors) 
–  Errors and error covariances in a-priori assumptions (e.g. rain number

 conc. parameter Nw varies climatologically with a factor of 3 spread) 
•  The unknown unknowns where we don’t know what the error is in

 an assumption or model 
–  Errors in radiative forward model, e.g. radar/lidar multiple scattering 
–  Errors in microphysical assumptions, e.g. mass-size relationship 
–  How do errors in classification feed through to errors in radiation? 
–  How do we treat systematic biases in measurements or assumptions? 

•  (also the ignored unknowns that we are too lazy to account for!) 

How can we move more things into the “known unknowns” category? 



Number

concentration 

Size
 distribution
 width/shape 

Particle shape Radar
 scattering &
 absorption 

Lidar
 scattering &
 absorption 

Warm liquid
 droplets 

Miles et al.
 (2000) 

Many aircraft
 campaigns 

Sphere Mie Mie 

Rain Many
 distrometer
 studies  

Illingworth &
 Blackman
 (2002) 

Spheroid,
 known
 aspect ratio 

T-matrix (Mie
 OK too) 

Mie is OK 

Drizzle Abel and
 Boutle
 (2012) 

Aircraft
 studies? 

Sphere Mie Mie 

Supercooled
 droplets 

A few aircraft
 studies? 

Same as for
 warm
 droplets? 

Sphere Attenuation
 unknown! 

Mie 

Ice Delanoe and
 Hogan
 (2008), Field
 et al. (2005) 

Delanoe et al.
 (2005), Field
 et al. (2005) 

Aggregate
 aspect ratio
 0.6; mass
-size relation? 

Spheroid
 agrees with
 obs (Hogan
 et al. 2012) 

Retrieved
 lidar ratio
 encapsulates
 variations 

Snow
 (possibly
 rimed) 

Same as ice? Same as ice? How do we
 represent
 riming? 

Hogan &
 Westbrook
 (2014)? 

Lidar ratio
 encapsulates
 variations 

Melting ice Lies between
 snow & rain? 

Lies between
 snow & rain? 

Very
 uncertain 

Attenuation
 uncertain! 

Ignore 

Known
 knowns 

Known
 unknowns 

Unknown
 unknowns 

Ignored
 unknowns 



•  What is the best
 supplement to
 radar reflectivity
 factor? 

Delanoe and 
Hogan (2010), 

EarthCARE 
“unified” 

CloudSat: 
Austin et al. 

(2009) 

Donovan et al. 
(2001), 

Okamoto et 
al. (2003) 

LIRAD (Platt) 
Chiriaco et al. 

(2004) 

MODIS etc. 

CALIPSO, 
Klett etc. 

IWC(Z), 
IWC(Z, T) 

Dual-λ 
Hogan et al. 

(1999) 

Doppler 
Matrosov, 

EarthCARE 

HSRL 
EarthCARE 



•  Advantages 
–  Lidar much more sensitive to thin cirrus: with radar gives great coverage 
–  Synergy extracts lidar attenuation: exactly what we want to know 
–  Radar-lidar ratio is very sensitive to particle size 

•  Limitations 
–  Signal extinguished in many deep clouds: revert to radar-only information 
–  Tricky to use: many papers try to correct lidar for attenuation first, but

 it is much more accurate to use the radar to help the inversion 
–  Retrieved lidar backscatter-to-extinction profile assumed constant with

 height: leads to biases if there is really a vertical gradient (problem
 resolved using infrared radiances or EarthCARE’s HSRL) 



•  Additional 215 GHz radar 
–  Size info deep in cloud:

 complements lidar 
–  Dependent on good radar

 scattering model 
•  Doppler (e.g. EarthCARE) 

–  Sensitive to ice density and
 therefore riming 

–  Need high signal-to-noise 
–  No use in convective clouds 



•  What’s the 94 GHz
 backscatter cross-section
 of this? 

•  Spheroid model works up
 to D ~ λ, but not for
 larger particles 

•  Rayleigh-Gans
 approximation works
 well: describe structure
 simply by area of particle
 A(z) as function of
 distance in direction of
 propagation of radiation 
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Simulated aggregate (Westbrook et al.) 



•  Hogan and Westbrook (2014) used simulated ice aggregates to derive
 an equation for radar backscatter: the “Self-Similar Rayleigh Gans
 approximation” 

•  For snowflakes, internal structures on scale of wavelength lead to
 significantly higher higher backscatter than “soft spheroids” 

1 mm ice 1 cm snow 
Realistic aggregate snowflake 

Soft spheroid  



Factor of 
5 error 

4.5 dB 

•  Field et al.
 (2005) size
 distributions at
 0°C 

•  Circles indicate
 D0 of 7 mm
 reported from
 aircraft
 (Heymsfield et
 al. 2008) 

•  Lawson et al.
 (1998)
 reported
 D0=37 mm: 17
 dB difference 



•  Spheres can lead
 to overestimate
 of water content
 and extinction of
 factor of 3 

•  All 94-GHz radar
 retrievals affected
 in same way 



CloudSat: 
Austin & 
Stephens 

(2001) 

MODIS etc. 

Drizzle-free: 
LWC(Z) 

PIA 
Lebsock et 
al. (2011) 

Wide-FOV 
Pounder et al. 

(2012) 

Optically very 
thin: Spinhirne 

et al. (1989) 



•  90% of liquid clouds over the oceans; 90% of those contain drizzle 
•  Lidar signal strongly attenuated & contaminated by multiple scattering 

•  Very useful constraints from radar path integrated attenuation (PIA)
 providing liquid water path (over ocean only) and MODIS providing
 optical depth (daytime only), but vertical profile very uncertain 

CloudSat radar reflectivity factor (dBZ) 

Where 
is cloud 
base? 



•  Forward
 modelled

backscatter 

•  Observed

backscatter 

•  Pounder, Hogan et al. (2012) proposed variational method to retrieve
 extinction profile in stratocumulus exploiting the multiple scattering
 from multiple field-of-view lidar (use fast “multiscatter” model) 

•  This idea works for single field-of-view lidar with footprint > 50 m 
–  Add constraint on LWC to be no steeper than adiabatic 
–  Calipso alone can retrieve optical depth and cloud base height 
–  Estimated LWP can then be compared to that from CloudSat PIA 
–  Complements other methods: land and sea, but night-time only 



•  LWC 

•  Effective
 radius 

•  Optical
 depth 

•  CloudSat
 PIA 



•  Observations 

•  Unified algorithm automatically
 uses radar to constrain ice and
 lidar to constrain liquid
 retrievals 
–  No idea what to do with

 embedded liquid unseen by lidar 
–  Note that quasi-Newton scheme

 uses many iterations… 

•  Retrievals 





•  EarthCARE is the exciting next step to the A-Train 
–  Better ice retrievals, especially for thin ice clouds: radar 7 dB more

 sensitive: HSRL gives direct extinction 
–  Doppler provides useful information on ice density and riming (as well as

 better retrievals of rain and drizzle rate) 
–  On-board 3-view broadband radiometer tests for radiative consistency 

•  What are the next steps for active cloud sensing in space? 
–  Multiple field-of-view lidar to retrieve extinction profile in stratocu 
–  Combined 94-215 GHz radars for particle sizing deep into ice cloud 
–  Radar measures linear depolarization to identify and exploit multiple

 scattering in deep convection 
–  Combine with Oxygen A-band spectrometer 
–  Combine with narrow-view microwave radiometers 
–  Better synergy algorithms with robust error estimates! 





The	
  A-­‐Train	
  versus	
  EarthCARE	
  

The	
  A-­‐Train	
  (fully	
  launched	
  2006)	
  
–  NASA	
  
–  Mul?ple	
  plaAorms	
  
–  700-­‐km	
  orbit	
  
–  CloudSat	
  94-­‐GHz	
  radar	
  	
  
–  Calipso	
  532/1064-­‐nm	
  lidar	
  
–  CERES	
  broad-­‐band	
  radiometer	
  
–  MODIS	
  mul?-­‐wavelength	
  radiometer	
  

	
  	
  	
  	
  	
  	
  	
  	
  EarthCARE	
  (launch	
  2016)	
  
–  ESA	
  and	
  JAXA	
  
–  Single	
  pla*orm	
  
–  393-­‐km:	
  higher	
  sensi0vity	
  
–  94-­‐GHz	
  Doppler	
  radar	
  	
  
–  355-­‐nm	
  High	
  spectral	
  res.	
  lidar	
  
–  3-­‐view	
  broad-­‐band	
  radiometer	
  
–  Mul?-­‐spectral	
  imager	
  



•  Reflectivity agrees 
well, provided Brown 
& Francis mass used 
with Dmean 

•  Differential 
reflectivity agrees 
reasonably well for 
oblate spheroids 

CWVC IV: 21 Nov 2000 



•  Simulated retrieval of
 optical depth for idealized
 adiabatic clouds, using
 spaceborne lidar with
 varying field of view (FOV) 

•  For FOV less than around
 50 m, there is simply too
 little multiple scattering
 signal to retrieve
 extinction and optical
 depth 

FOV <= 50 m (e.g. EarthCARE) 



3. Compare to observations (y) 
Check for convergence 

Ingredients developed 
Not yet completed 

1. Define state variables to be retrieved (x) 
Use classification to specify variables describing each species at each gate 
Ice and snow: extinction coefficient, N0’, lidar ratio, riming factor 
Liquid: extinction coefficient and number concentration 
Rain: rain rate, drop diameter and melting ice 
Aerosol: number concentration, particle size and lidar ratio 

2a. Radar model 
With multiple scattering, 
Doppler and PIA 

2b. Lidar model 
Including HSRL channels 
and multiple scattering 

2c. Radiance model 
Solar & IR channels 

4. Iteration method 
Derive a new state vector: 
quasi-Newton or Levenberg-
Marquardt scheme 

2. Forward model 

Not converged 

Converged 

Proceed to next ray of data 
5. Calculate retrieval error 
Error covariances & averaging kernel 







•  Heymsfield & Westbrook (2010) fall speed vs. mass, size & area 
•  Brown & Francis (1995) ice never falls faster than 1 m/s 

0.9 

0.8 

0.7 

0.6 

•  Retrieve a riming
 factor (0-1) which
 scales b in
 mass=aDb

 between 1.9
 (Brown & Francis)
 and 3 (solid ice) 



1 m/s: no riming or very weak 

2-3 m/s: riming? 
•  PDF of 15-min-averaged 

Doppler in snow and ice 
(usually above a melting layer) 



•  LWC 

•  Effective
 radius 

•  Optical
 depth 

•  CloudSat
 PIA 

Assimilate also CloudSat PIA 



•  LWC 

•  Effective
 radius 

•  Optical
 depth 

•  CloudSat
 PIA 

Retrieve number concentration 

•  Number concentration 




