

4th Cloud Retrieval Evaluation Workshop, Grainau, Germany

South Korea's geostationary satellite cloud retrievals: current status and plans for GK-2A in 2017

2014. 3. 4.

¹Yong-Sang Choi, ¹Hye-Sil Kim, ¹Min-Jae Kwon, ¹Jungmin Park and ²Sung-Rae Chung

¹Ewha Womans University ²National Meteorological Satellite Center/ Korea Meteorological Administration First COMS Visible Image 12 July 2010 0215 UTC

Current status of COMS cloud products (2010-)

Sample Images

Algorithms and theoretical bases

1TP

Products	Retrieval Methods	References			
Cloud mask	Single- or bi-spectral threshold tests	Ackerman et al. 1998			
Cloud type	 Single- or bi-spectral threshold tests, texture tests CTTH-COT combination (ISCCP) 	Derrien and Le Gleau 2005 Rossowand Schiffer 1999			
Cloud fraction	Area average of pixel group	MODIS ATBD, Oh et al. 2006			
Cloud phase	IR trispectral algorithm (6.7,11,12) (Absorptivity of ice and water)	Strabala et al. 1994, Baum et al. 2000 Key and Intrieri 2000, Knap et al. 2002 Acarreta et al. 2004, Kokhanovsky 2006 Choi et al. 2007 IJRS, Choi and Ho 2009 IJRS			
Cloud optical thickness	Sun reflectance method (cloud- reflected intensity depends on phase) (0.6,3.7)	Ou et al. 1993, Platnick and Valero 1995 Nakajima and Nakajima 1995			
effective particle radius	Sun reflectance method (cloud- reflected intensity depends on phase) (0.6, 3.7)	King et al. 1997 Choi et al. 2007 IJRS, Choi and Ho 2009 IJRS			
Cloud top temperature and pressure	1. IR window channel estimate 2. Radiance ratioing method (6.7, 11)	Smith and Platt 1978 Menzel et al. 1983, Schmetz et al. 1993 Choi et al. 2007 IJRS, Choi and Ho 2009 IJRS			

Products validation results (for more details, see the poster "Inter-comparison of cloud parameters between COMS and MODIS" by Haklim Choi et al.)

CTP (2011)	4	5	6	7	8	9	10	11	12
Number	506,857	502,008	1,209,370	921,060	783,201	710,904	784,909	1,128,555	361,295
R	0.79	0.79	0.84	0.91	0.96	0.94	0.90	0.83	-
CTP (2012)	1	2	3	4	5	6	7	8	
Number	262,406	2,463,000	2,070,112	698,029	1,648,162	1,928,098	777,082	-	
R	-	-	-	-	0.81	0.86	0.94	0.94	
COT (2011)	4	5	6	7	8	9	10	11	12
Number			7,186,928	5,120,114	5,655,369	5,680,796	4,755,212	4,896,736	967,176

			.,	•,•,	0,000,000	0,000,100	.,,	.,,	,
R			0.07	0.09	0.09	0.09	0.10	0.09	-
COT (2012)	1	2	3	4	5	6	7	8	
Number	661,720	7,418,602	9,939,544	3,089,647	8,553,424	8,513,975	4,843,645	-	
R	-	-	-	-	0.76	0.85	0.83	0.82	

CF (2011)	4	5	6	7	8	9	10	11	12
Number	32,106,895	-	101,514,547	68,406,931	67,821,246	68,693,589	57,481,217	74,201,714	16,866,578
R	0.90	0.94	1.00	1.00	1.00	1.00	1.00	1.00	-
CF (2012)	1	2	3	4	5	6	7	8	
Number	9,185,198	89,659,779	104,963,490	35,187,443	106,633,644	105,626,985	65,452,771	-	
R	-	-	-	-	1.00	1.00	1.00	1.00	

GEO-KOMPSAT-2A (2018-)

Development of GEO-KOMPSAT-2A

Object

- Obtaining a geostationary meteorological satellite for continuous monitoring of meteorological phenomena
- ✓ Development of follow-on satellite for succession of COMS mission

Mission

- ✓ Continuing the COMS Meteorological Mission
- ✓ Improving the Severe Weather Monitoring
 - Higher frequency of observation
 - Retrieving the atmospheric structure (pseudo-sounding)
- ✓ Improving the support of the NWP model
 - Efficient data assimilation system
- ✓ Intensifying the environment & climate monitoring
 - Various surface information retrieval
 - Air pollution monitoring
 - Establishing long-term observation data

GEO-KOMPSAT-2 Program

→ One for the next generation Meteorological Imager
 → The other for the Ocean and Atmospheric Trace Gas monitoring

GEO-KOMPSAT-2A Payload

Meteorological payload

	GEO-KOMPSAT-2A	COMS	
Channels	16	5	
Spatial Resolution (km)	0.5, 1 (VIS), 2 (IR)	1 (VIS), 4 (IR)	
Temporal Resolution (min)	10 (Full Disk)	25 (Full Disk)	
Data Rate (Mbps)	~70	2.6	
Life time (years)	10	7	
Main Purpose of use	Weather Forecasting + NWP + CM	Weather Forecasting	

The Channels of GEO-KOMPSAT-2A

Band No.	Band Name	Resolution (km)	Dynamic Range	Radiometric Accuracy	
1	VIS0.4	1	0-720 W/m ² /sr/um	5%	
2	VIS0.5	1	0-710 W/m ² /sr/um	5%	
3	VIS0.6	0.5	0-620 W/m ² /sr/um	5%	K
4	VIS0.8	1	0-320 W/m ² /sr/um	5%	
5	NIR1.3	2	0-114 W/m ² /sr/um	5%	
6	NIR1.6	2	0-77 W/m ² /sr/um	5%	
7	IR3.8	2	0-400 K	1 K	COIVIS 5 obonnolo
8	IR6.3	2	0-300 K	1 K(🖞)	(2010-)
9	IR6.9	2	0-300 K	1 K	(2010-)
10	IR7.3	2	0-320 K	1 K(🖞)	
11	IR8.7	2	0-330 K	1 K	
12	IR9.6	2	0-300 K	1 K	
13	IR10.5	2	0-330 K	1 K	
14	IR11.2	2	0-330 K	1 K	
15	IR12.3	2	0-330 K	1 K	
16	IR13.3	2	0-305 K	1 K	6

calibration accuracy at max temperature \leq 300K

Plans for GK-2A cloud products

Expected algorithms and changes from COMS Cloud Analysis

STREAMER Tests for cloud optical thickness (COT)& effective radius (ER) retrieval during daytime using three channels $(3.7, 2.25, 1.61 - \mu m)$

 $\theta(solar \ zenith \ angle) = 60^{\circ}, \theta_0(satellite \ zenith \ angle) = 60^{\circ}, \varphi(relative \ azimuth \ angle) = 0^{\circ}$

STREAMER Tests for cloud optical thickness (COT)& effective radius (ER) retrieval during nighttime using three channels (10.8,8.5,12.0-µm)

 $\theta(solar \ zenith \ angle) = 60^{\circ}, \theta_0(satellite \ zenith \ angle) = 60^{\circ}, \varphi(relative \ azimuth \ angle) = 0^{\circ}$

STREAMER Tests for cloud top property (CTP) at tropics/mid-latitude /arctic regions in summer using three channels $(3.7, 9.6, 13.3 - \mu m)$

Summary

Products	Current retrieval methods for MI/COMS	Direction of Development for AMI/GK-2A
Cloud mask	Single- or bi-spectral threshold tests with 5 channels	Use all 16 channels, optimization
Cloud phase	IR trispectral algorithm (Absorptivity of ice and water)	Replace 6.7 µm with 8.7 µm channel, optimization
Cloud optical thickness & effective radius	Sun reflectance method (cloud- reflected intensity depends on phase) with 0.6 and 3.7 µm	Replace 3.7 µm by 1.6, or 2.2 µm channels, optimization, Only daytime
Cloud top temperature and pressure	 IR window channel estimate Radiance ratioing method 	Replace 6.7 µm with 13.3 µm channel for radiance ratioing, optimization
Cloud type	 Single- or bi-spectral threshold tests, texture tests CTTH-COT combination (ISCCP) 	SEVIRI cloud type algorithm via the collaboration with NWC SAF, No ISCCP cloud type retrieved
Cloud fraction	Averaging, hemispheric projection	-
Convective cloud	-	Threshold techniques with CTT

Thank You!

We welcome your cooperation, and hope to contribute CREW

ysc@ewha.ac.kr

Baseline cloud products

- Cloud mask
 - Existence and nonexistence of cloud with probability
- Cloud type
 - Cloud classification by optical thickness, top height, and textures
- Cloud fraction
 - Cloudiness in %
- Cloud phase
 - Thermodynamic cloud phase: Ice, liquid, and mixed phase
- Cloud optical thickness and effective radius
 - COT: A measure of cloud transparency, $log(I / I_0)$
 - ER: A weighted mean of the size distribution of cloud droplets.
 the ratio of the 3rd to 2nd moment of a droplet size distribution.
- Cloud top temperature/pressure/height
 - Cloud-top temperature (in K), pressure in (hPa), height (m)

References

- Oh, H.-R., Y.-S. Choi, C.-H. Ho, and M.-H. Ahn (2006), Development of sky cover retrieval algorithm for the Communication, Ocean and Meteorological Satellite (COMS) imagery, *Journal of the Korean Meteorological Society*, 42, 389–396.
- Choi, Y.-S., C.-H. Ho, M.-H. Ahn, and Y.-M. Kim (2007), An exploratory study of cloud remote sensing capabilities of the Communication, Ocean and Meteorological Satellite (COMS) imagery, *International Journal of Remote Sensing*, 28, 4715–4732.
- Choi, Y.-S., and C.-H. Ho (2009), Validation of the cloud property retrievals from the MTSAT-1R imagery using MODIS observations, *International Journal of Remote Sensing*, 30, 5935–5958.

STREAMER Tests for cloud top property (CTP) at mid-latitude using three channels $(3.7/9.6/13.3-\mu m)$

STREAMER Tests for cloud top property (CTP) at mid-latitude using three channels $(3.7/9.6/13.3-\mu m)$

Expected algorithms and changes from COMS Cloud Optical Thickness (COT) and Effective Radius (ER)

Expected algorithms and changes from COMS Cloud Top Temperature/Pressure/Height (CTT,CTP,CTH)

Expected algorithms and changes from COMS Cloud Top Temperature/Pressure/Height (CTT,CTP,CTH)

Expected algorithms and changes from COMS Cloud Type (CT)

Expected algorithms and changes from COMS Cloud Type (CT)

Expected algorithms and changes from COMS Convective Cloud (CC)

