

Presentation outline

- Motivations
- Principal Component-based Radiative Transfer Model (PCRTM)
- PCRTM retrieval algorithm and applications to CrIS and IASI data
- Summary and Conclusions

Motivations

- Need fast radiative transfer model to handle hyperspectral data
	- Modern sensors have thousands of channels and 0.1-1 million spectra per day
	- Only 4-10% of data are used in satellite data assimilations
- Need retrieval algorithm to take advantage of hyperspectral data
	- Retrieve all parameters that contribute to the TOA radiance
	- No need to to perform retrieval on cloud-cleared radiances
	- No need to make assumptions about the inhomogeneity of the scene
	- Provide realistic error estimate for the retrieved parameters
	- More physical cloud parameters can be retrieved

Examples hyperspectral sensors:

- CrIS 1305 x 3 x 3
- NAST-I 8632 x 1 x 1
- $|AS|$ 8461 x 2 x 2
- FIRST ~1500x10 (or more)
- CLARREO thousands
- PCRTM (Principal Component-based Radiative Transfer model) was developed to satisfy the need listed above

Introduction to PCRTM Forward Model

- Explore spectral correlation in hyperspectral data
	- No need to calculate spectrum one channel at a time
	- Compress spectra into compact form using PCA, wavelet, Fourier Series etc
	- Reduce dimension of the data
- PCA is a good approach for compressing spectra and capture information
	- Leading EOFs captures all essential information of thousands of channels
	- PCA has been used to reduce instrument noise and to compress spectra
- PCRTM parameterization is physical-based fast model

$$
y_i = \vec{R}^{ch} \times U_i = \sum_{j=1}^{N_{mono}} \phi_j R_j^{mono} \vec{U}_i = \sum_{j=1}^{N_{mono}} A_j R_j^{mono}
$$

$$
\vec{R}^{ch} = \sum_{i=1}^{N_{DCF}} y_i \vec{U}_i + \vec{\varepsilon}
$$

- Radiative transfer done monochromatically at very few frequencies
- Very accurate relative to line-by-line (LBL) RT model (< 0.05K or 0.05%)
- 3-4 orders of magnitude faster than LBL RT models
- A factor of 2-100 times faster than channel-based RT models
- Provides Jacobian or radiative kernel needed for retrievals and climate studies
- Includes accurate cloud RT: multiple layers and multiple scattering up to 101 layers

PCRTM is Physical and Fast

- Example of $O₂$ A-band
	- 12000 monochromatic RT LBL calculations needed to covr 759-771 nm spectral region
- PCRTM reduces monochromatic RT calculation to 7
	- 1700 times faster than LBL
	- Been trained for OCO (~0.04 nm) and SCIAMACHY (~0.2 nm) spectral resolutions

Computational Speed up in Solar Spectral Region

- PCRTM reduces MODTRAN RT calculation by a factor or 28-928 depending on spectral resolution and MODTRAN accuracy chosen
	- PCRTM can handle ice and water clouds
	- **Aerosols**
	- Various trace gases
	- Land and ocean surfaces
	- Multiple scattering calculation uses 4-32 streams
- It takes 1 day to simulate 1 year of all sky SCIAMACHY spectra using PCRTM with 30 CPUs
- It will take more than 2 years for the MODTRAN to do the same

Computational Speed in IR Spectral Region

- Milliseconds to fraction of seconds in IR
- CrIS, CrIS-full-res, IASI, NAST-I and S-HIS have multiple databases corresponding to different instrument lineshape function
- Spectral coverage (50-3000 cm-1)
- Multilayer, multiple scattering clouds included
- 15 variable trace gases
- It provide radiative kernel /Jacobian with minimum additional computations.

Accuracy of PCRTM is very good relative to reference RT models

- Bias error relative to LBL is typically less than 0.002 K
- The PDF of errors at different frequencies are Gaussian distribution
- RMS error \leq 0.03K for IR and \leq 5x10⁻⁴ mW/cm²/sr/cm⁻¹ for solar $(< -0.02\%)$

CREW-4, March 4-6, 2014 (Xu.Liu-1@nasa.gov) ⁷

PCRTM has been validated using CrIS, IASI, AIRS, NAST-I, and SCIAMACHY real data

CREW-4, March 4-6, 2014 (Xu.Liu-1@nasa.gov)

1600 1800

Example of Jacobian from PCRTM

A brief description of the PCRTM Optimal Estimation Retrieval Algorithm

$X_{n+1} - X_a = (K^T S_v^{-1} K + \lambda I + S_a^{-1})^{-1} K^T S_v^{-1} [(y_n - Y_m) + K(X_n - X_a)]$

PCRTM models PC scores directly

- − Small matrix and vector dimensions
- − All 8000 channels from IASI and NAST-I used

Both y and x vectors are in EOF domain – Small matrix and vector dimensions

-
- 100 super channels instead of thousands of channels
- Simply minimizing cost function
- Channel-to-channel correlated noise handled

All parameters retrieved simultaneously – No need to estimate errors of non-retrieved parameters

-
- Temperature
- Water
- Trace gases (CO2, CO, CH4, O3, N2O)
- Surface temperature and emissivities
- Cloud optical depth/size/phase/height

Comparison of PCRTM retrieval with radiosondes

- Temperature, moisture, and ozone cross-sections
- Plots are deviation from the mean
- Fine water vapor structures captured by the retrieval system
- A very cloudy sky condition

3500

Example of retrieved cloud properties

Example of retrieved surface temperature and emssivity and comparison with field validation data

Comparison of PCRTM retrieved surface skin temperature with ARIES measured Tskin

Comparison of retrieved ocean emissivity with ARIES aircraft measurements

Example of retrieved global distribution of climate related properties retrieved using the PCRTM algorithm

Atmospheric temperature at 9 km for July 2009 Surface skin temperature for July 2009

Surface emissivity for July 2009 Atmospheric carbon monoxide mixing ratio for July 2009

Recent Application of PCRTM to S-NPP CrIS data

Trace gas retrievals from CrIS with different spectral resolutions

From nominal resolution CrIS **Fig. 10.13** From high resolution CrIS

Summary and conclusions

- Forward model is a key component in analyzing hyperspectral data
	- PCRTM has been developed for numerous satellite and airborne sensors
	- Covers spectral range from $0.31 \mu m$ to 200 μm
	- With 15 variable trace gases
	- Multiple scattering clouds included
	- Physical and accurate
	- Very fast relative to LBL and traditional fast RT models
	- Been applied to numerous hyperspectral sensors: AIRS, IASI, CrIS, NAST-I, SCIAMACHY
- PCRTM retrieval algorithm developed to use full spectral information
	- Atmospheric temperature profile
	- Atmospheric water vertical profiles
	- Trace gas profiles,
	- Cloud height, particle size, phase, effective temperature, optical depth
	- Surface properties (Tskin, emissivity …)
- Advantages over existing methods
	- No need to assume the scene inhomogeneity and estimate cloud-clearing error
	- Full multiple scattering effect account for through a fast parameterization
	- Full spectral channels used with all relevant parameters retrieved simultaneously
	- Good error estimate on retrieved variables