



# ESA Climate Change Initiative: Evaluation of the FAME-C cloud properties for the years 2007-2009

Cintia Carbajal Henken, Rasmus Lindstrot, Rene Preusker and Jürgen Fischer

Institute for Space Sciences, Freie Universität Berlin





- Introduction to FAME-C
- Comparison to MODIS coll5 cloud optical and micro-physical properties
- Two independent cloud top height retrievals and relation to cloud geometrical extend



**FAME-C** 

FUB AATSR MERIS Cloud retrieval

- FAME-C is a daytime synergistic cloud retrieval algorithm for measurements of MERIS & AATSR (and accordingly OLCI & SLSTR).
- Uses optimal estimation to provide for uncertainty estimates (pixel quality flags)



FAME-C

FUB AATSR MERIS Cloud retrieval

- FAME-C is a daytime synergistic cloud retrieval algorithm for measurements of MERIS & AATSR (and accordingly OLCI & SLSTR).
- Uses optimal estimation to provide for uncertainty estimates (pixel quality flags)
- In sequential form
- Synergy products of AATSR and MERIS bands: collocation & cloud mask (Gomez-Chova et al. 2010)
- Cloud micro-physical retrieval (based on DCOMP; Walther et al. 2011): COT & REFF → LWP/IWP
- 3. Cloud Height retrieval: CTP and CTT





# 2. Comparison of Cloud Microphysical properties to MODIS coll5 cloud products



# **Comparison to MODIS coll5**

- FAME-C 10.00 am descending node
- MOD08 (TERRA) 10.30 am descending node
- For micro-physical retrievals, both on horizontal resolution 1 km



# **Comparison to MODIS coll5**

- Cut out MODIS swath to width of AATSR swath  $\rightarrow$  similar viewing angles
- Take MODIS cloudy pixels with QA = general assessment good
- Overflying orbits about every 3 days







# **Cloud Phase**

 Brightness Temperature threshold 261 K (Pruppacher and Klett, 1997)

 Additional Cirrus test: split-window technique BT11-BT12 with dynamic threshold (MOMO simulations with different atmospheric and surface situations)





# Level-2 Histograms





## **Cirrus/cloud boarders**





# Level-2 Histograms



CREW-4, 03–07 March 2014, Grainau, Germany



# Monthly means

|     |                         | Bias  |        |        |        | RMSE  |       |        |        |
|-----|-------------------------|-------|--------|--------|--------|-------|-------|--------|--------|
|     |                         | All   | Wat    | Ice    | Unc    | All   | Wat   | Ice    | Unc    |
| CAF | CF [%]                  | -1.87 | -10.13 | -1.95  | 21.83  | 12.45 | 16.24 | 6.73   | 22.87  |
|     | COT [1]                 | -1.54 | 0.58   | -3.73  | -2.70  | 4.84  | 2.08  | 7.40   | 7.52   |
|     | REF [ $\mu$ m]          | 0.07  | -1.49  | 0.92   | 0.28   | 3.48  | 1.95  | 4.10   | 2.45   |
|     | REF16 [µm]              | -1.06 | -3.11  | 0.42   | 0.21   | 3.56  | 3.33  | 4.13   | 2.03   |
|     | CWP [g/m <sup>2</sup> ] | 21.62 | 4.61   | 29.05  | 2.48   | 83.70 | 19.11 | 111.78 | 75.29  |
| GER | CF [%]                  | 4.70  | -11.97 | -2.39  | 29.81  | 15.59 | 17.26 | 9.66   | 33.82  |
|     | COT [1]                 | -4.57 | -3.02  | -9.70  | -3.03  | 6.20  | 5.80  | 11.91  | 11.18  |
|     | REF [ $\mu$ m]          | 2.26  | 0.09   | 4.50   | 0.43   | 3.14  | 1.38  | 5.61   | 3.61   |
|     | REF16 [µm]              | 1.64  | -1.01  | 4.18   | 1.10   | 2.78  | 1.90  | 5.83   | 3.04   |
|     | CWP [g/m <sup>2</sup> ] | 0.45  | -8.39  | -40.89 | 11.31  | 40.39 | 35.27 | 107.55 | 86.28  |
| NAM | CF [%]                  | 7.57  | -2.41  | 0.08   | 0.28   | 12.98 | 6.08  | 0.48   | 2.22   |
|     | COT [1]                 | -0.60 | -0.28  | -4.94  | 7.95   | 1.38  | 1.27  | 7.06   | 10.52  |
|     | REF [ $\mu$ m]          | -0.31 | -0.47  | 1.59   | 3.68   | 1.33  | 1.34  | 5.48   | 5.29   |
|     | REF16 [µm]              | 0.65  | 0.41   | 3.60   | 4.71   | 1.35  | 1.18  | 6.45   | 6.21   |
|     | CWP [g/m <sup>2</sup> ] | -1.95 | -0.18  | -27.91 | 115.42 | 13.62 | 14.46 | 47.44  | 141.66 |
| SAO | CF [%]                  | 14.23 | -1.77  | 0.26   | 1.25   | 16.17 | 8.30  | 1.17   | 2.51   |
|     | COT [1]                 | -1.10 | -0.56  | -3.57  | 1.96   | 1.75  | 1.43  | 4.38   | 5.31   |
|     | REF [ $\mu$ m]          | 1.11  | 1.11   | -1.44  | 4.38   | 2.41  | 2.18  | 7.04   | 6.58   |
|     | REF16 [µm]              | 2.00  | 1.80   | 2.05   | 5.38   | 2.70  | 2.39  | 6.92   | 7.18   |
|     | CWP [g/m <sup>2</sup> ] | -0.28 | 5.20   | -28.78 | 66.98  | 17.25 | 17.16 | 44.56  | 88.68  |





# 3. Comparison of retrieved Cloud Top Heights to ARM site measurements

# **Cloud Height Retrievals**

#### AATSR-CTT

- Brightness Temperatures
- More sensitive to higher clouds

#### **MERIS-CTP**

- Oxygen-A absorption band
- More sensitive to lower clouds



Freie Universität

Berlin

### **CloudSat mean vertical cloud profiles**





# Comparison of MERIS and AATSR CTH to radar-CTH



Collect MMCR from ARM sites (SGP, TWP)

- For years 2007-2009
- For ENVISAT overflight times
- Filter out cases with temperature inversion

Compare to radar-CTH

- Use -30 dBZ to find upper cloud layers
- Apply parallax correction to satellite data
- Compute temporal (radar) and spatial (satellite) mean
- For not too variable cloudy cases in time and space



## **Comparison to radar-CTH**

|                      |     | Bias [km] |       | RMSE [km] |       |
|----------------------|-----|-----------|-------|-----------|-------|
|                      |     | Single    | Multi | Single    | Multi |
| AATSR-CTH            | CPR | -1.48     | -1.38 | 3.06      | 2.19  |
|                      | HOM | -1.30     | -1.20 | 2.96      | 2.07  |
| MERIS-CTH            | CPR | 0.62      | 0.10  | 2.91      | 2.72  |
|                      | HOM | -4.10     | -5.11 | 4.90      | 5.54  |
| AATSR-CTH, $COT > 5$ | CPR | -0.40     | -1.36 | 1.58      | 2.33  |
|                      | HOM | -0.25     | -1.21 | 1.52      | 2.23  |
| MERIS-CTH, $COT > 5$ | CPR | 0.92      | -0.31 | 2.27      | 2.69  |
|                      | HOM | -3.39     | -5.43 | 4.03      | 5.84  |

# Comparison of CTH-DIFF to Freie Universität

Collect MMCR from ARM sites (SGP, TWP)

- For years 2007-2009
- For ENVISAT overflight times
- Filter out cases with temperature inversion

Compare to radar-CTH

- Use -30 dBZ to find upper cloud layers
- Apply parallax correction to satellite data
- Compute temporal (radar) and spatial (satellite) mean
- For not too variable cloudy cases in time and space

Collect LIDAR data for CBH

## **Comparison to lidar-CBH and radar-CTH**



Freie Universität

🖗 Berlin

## **Comparison to lidar-CBH and radar-CTH**



Freie Universität

🖗 Berlin

# **Summary and Outlook**

Level-2 Histograms useful to identify cloud property retrieval issues

Freie Universität

Berlin

CTH difference related to cloud vertical extend

- Compare CTH difference to DARDAR dataset
- Cloud Masking/Cloud phase → Cloud typing
- Look into uncertainty estimates
- Perform retrievals for years 2002-2012
- Prepare FAME-C for OLCI and SLSTR on SENTINEL-3
  - $\rightarrow$  more channels in OLCI Oxygen-A band
  - $\rightarrow$  1.3 and 2.2 micron channel for SLSTR
  - $\rightarrow$  larger swath width

#### More information: www.esa-cloud-cci.org



# **Thank you!**



# **MERIS Oxygen-A band**

- Oxygen: constant and wellmixed in atmosphere
- Can therefore be used to estimate average photon path length in atmosphere
- In cloudy situations this average photon path length is mainly determined by cloud top pressure (CTP)
- Transmission O2A band → Ratio L11/L10

