Thoughts on a CALIPSO Level 3 Cloud Product

Dave Winker
NASA Langley Research Center

- Currently there are two Level 3 cloud products based on CALIOP data, produced for two specific projects:
 - GEWEX CA: 1x1 degree, H/M/L
 - Produced for the GEWEX Cloud Assessment
 - CALIPSO-ST: 2x2 deg x 480 meters
 - Counterpart to CALIPSO-GOCCP produced for CMIP5
- Both contain only information on cloud occurrence
- A full Level 3 product including cloud properties from both CALIOP and IIR is now being designed

Design Principles

- Ideally, the product emphasizes data strengths
 - guides the user in the proper way to use the data
 - minimize the weaknesses, or at least force users to confront weaknesses.
- Lidar strengths:
 - Accurate cloud top height, cloud phase, high spatial resolution (V & H: BL cloud), high sensitivity (optically thin cirrus and marine stratocumulus), most accurate OD and IWP for thin cirrus, multilayer clouds, Arctic clouds
 - Only partially penetrate optically thick clouds, don't see what's below
 - Mostly don't retrieve optical depth of water clouds
- Rather than frequency of occurrence, provide sample numbers to allow aggregation of statistics.
 - Not just means and variances: histograms, co-variation, ...
- The product can't be all things to all people, try to anticipate the most common questions users will ask from the product.
 - Consider user communities and how they want to use data
 - Don't include parameters/features without identified users
- Grids for L3-Aerosol, L3-Cloud products should at least be consistent

Primary Contents

CALIOP

- Structure: cloud occurrence, cloud top height, cloud thickness, multilayering,
- Properties: OD (ice only?), IWP
- IIR:
 - Properties: emissivity, IR-OD, De, IWP
- Co-variations of lidar properties (examples):
 - OD vs. CTH
 - OD vs. cloud thickness
 - IWP vs. CTH
- Co-variations of IIR properties (examples):
 - ϵ vs. CTH
 - OD vs. De
 - ϵ vs. De
 - IWP vs. CTH
 - IWP vs De

Proposing 3 basic ways to present CALIOP cloud data

(1) 3D Cloud Occurrence

Holds numbers of cloud samples in each of a number of (altitude, OD) bins includes # clear air samples (τ =0) so that cloud fraction can be computed user can compute cloud fraction for any desired OD threshold

(repeated for each cell of a lat-lon grid)

1

 $z_i \quad \tau_i =$

Each element holds a vector N:

$$\mathbf{N} = [N_1, N_2 ...]$$

 N_1 : Number clouds at z_i with OD of τ_i

 $\mbox{N}_2\mbox{:}$ Number ice clouds at $\mbox{z}_{\mbox{\scriptsize i}}$ with OD of $\tau_{\mbox{\scriptsize i}}$

 N_3 : Number water clouds at z_i with OD of τ_i

$$N_{\text{total}} = N_{\text{water}} + N_{\text{ice}} + N_{\text{unknown}}$$

Do this also for z_i vs. IWP_i

(2) Cloud layer thickness statistics

Each element holds:

Number clouds w/ thickness Δz and cloud top at z_{top}

Number ice clouds w/ thickness Δz with cloud top at z_{top}

Number water clouds w/ thickness Δz with cloud top at z_{top}

Add optical depth or IWP to this? (3rd dimension) How do we indicate opaque layers vs. layers with detected bases?

(3) Multi-layer occurrence

add OD of highest cloud layer as 3rd dimension?

Representing IR Properties

(Here, OD is the visible OD derived from 12 um IR channel)

Thoughts on Implementation

- There are other definitions of altitude:
 - Some properties (cloud ice/water phase) should be reported vs. temperature as well as altitude
 - Report properties vs. pressure altitude?
- Product will be monthly, but horizontal and vertical grids not defined yet
 - Leaning toward 2x2 degree lat-lon
 - Vertical resolution drives file size: 60 m (too small?), 480 m (too coarse?)
- Could have a "standard" and "research" versions
 - Standard version: statistical significance at grid-scale
 - 10x10 monthly grid, for example
 - Research version: high resolution for maximum flexibility in aggregation
 - 1x1 daily grid, for example
- Will provide the GEWEX Cloud Assessment statistics (CAH, CAL, etc.) either within these Level 3 files or as separate files
 - Oriented toward validation of passive cloud sensors
 - Can't be generated by from the high vertical resolution L3 cloud product
 - Include within L3-C, or only as a separate GEWEX product?

- Is there a need to represent profile parameters? (like IWC)
 - Aerosols are distributed (everywhere), clouds are objects
 - Who wants it? How do we represent profile parameters?
- Argument against:
 - Cloud extinction averaged over a grid cell (usually) not related to average radiative flux/cloud radiative effects for the grid cell
 - Aerosol extinction << cloud extinction (typically): still in the linear region